Friday, May 22, 2020

This expires in 5 hours

This is it! In less than 5 hours, we're shutting down the deal and free bonuses for Pipeline Pro Tools.

Save yourself money, frustration, and a whole lot of time by grabbing it right here before tonight's deadline.

As a quick reminder, here's what will happen when you take action on this:

  • You'll get instant access to the Pipeline Pro Tools software, where you'll have all the tools you need to build an evergreen lead gen system that runs on auto-pilot.
  • Then someone you'll be assigned a personal coach, who will reach out to you to give you a custom daily lead gen plan to get your first client.
  • And if you use the promo code "JASON" along with the yearly payment option, you'll get $200 off, 6 proven marketing playbooks, and 6 months enrollment into Elite, our private group coaching program.

Ready to get started?

Go here to get it before the deadline!

-Chris Jones

RainbowCrack


"RainbowCrack is a general purpose implementation of Philippe Oechslin's faster time-memory trade-off technique. In short, the RainbowCrack tool is a hash cracker. A traditional brute force cracker try all possible plaintexts one by one in cracking time. It is time consuming to break complex password in this way. The idea of time-memory trade-off is to do all cracking time computation in advance and store the result in files so called "rainbow table". It does take a long time to precompute the tables. But once the one time precomputation is finished, a time-memory trade-off cracker can be hundreds of times faster than a brute force cracker, with the help of precomputed tables." read more...

Website: http://www.antsight.com/zsl/rainbowcrack

Related word
  1. Hacking Basico
  2. Hacker Profesional
  3. El Hacker
  4. Cosas De Hackers
  5. Libro Hacking Etico
  6. Hacking News
  7. Hacking Pages
  8. Etica Definicion
  9. Como Aprender A Ser Hacker
  10. Hacking Libro
  11. Growth Hacking Examples
  12. Paginas De Hacking
  13. Aprender A Ser Hacker

Our $200 off deal expires today!

What a week! Let's recap...

1. You want to get your lead generation dialed in

2. I showed you my top lead gen playbook on Tuesday's webinar

3. Then I showed you my secret weapon: Pipeline Pro Tools

Pro Tools makes the fb marketplace playbook 100x easier and more effective. It's the set of tools my team uses to capture 250+ quality leads per month alongside 665 other top-producing teams/agents around the country.

For agents who attended the webinar on Tuesday we're giving $200 off, making it only $1199 $999 for the entire year.

Plus 2 more insane bonuses

Bonus #2 - 6 proven marketing playbooks by me, Kevin Kauffman, Jason Morris, Ruben Garcia, and others. ($149 each $0.00)

Bonus #3 - 6 months enrollment in Elite Group Coaching ($497/month $0.00)

>>> Get the deal now <<<

Now half of you wants to wants to jump all the way in and start building a lead generation machine just like the ones I laid out in each of the webinars this week. Can you imagine attracting new listing appointments on auto-pilot?

But... the other half of you is telling yourself to just be "realistic" and stay satisfied with the way things are right now.

I'll be honest: there's a very good reason we all have that half (including me).

It's there to protect us from that awful feeling of failure.

No one wants to invest time, energy, and money into something only to see it not work. And we've all been there before with some "program" in the past (that program is most likely now on the shelf or in the trash).

I'm not going to promise you a magic bullet. But I will promise you this: If you join Pipeline Pro Tools, do the work (and can show you did the work), and you don't get results... then not only can you cancel but we'll insist on giving you a full refund. This is a guarantee our company lives and dies by.

Investing in marketing tools shouldn't force you to take a massive risk. This way, all the risk is on us, as it should be.

But if you wait much longer this opportunity will disappear. Expires tonight at midnight.

>>> Get the deal now <<<

If you still have questions, doubts, hangups, that's okay. You should probably get a demo.

>>> Book a demo <<<

When you get a demo, we will send a download of 1 of our 3 lead gen playbooks after it's over. Your choice, and yours to keep forever. No strings attached.

And because we are currently overbooked, we are happy to extend today's deal through the day/time of your demo.

All the best,

-Chris Jones

Thursday, May 21, 2020

Scanning For Padding Oracles

As you might have heard, we recently got our paper on padding oracle attacks accepted to the USENIX Security Conference. In this paper, we describe and evaluate a scanning methodology with which we found several padding oracle vulnerabilities in devices from various vendors. In total, we found that 1.83% of the Alexa Top 1 Million have padding oracle vulnerabilities.

To test whether a server is vulnerable, we specified different padding oracle vectors which we send to the system under test, using different cipher suites and protocol versions. If the server does not behave identically (on both the TLS and TCP layers), we consider it to be vulnerable to a padding oracle attack, since it is leaking information about the plaintext via behavior differences. Depending on the responses to such padding oracle vectors, one can estimate which implementation is responsible for the vulnerability. We contacted quite a few website owners and tried to cooperate with them, to find out which vendors and TLS stacks are responsible for the identified vulnerabilities. You can find our current disclosure status on this issue on https://github.com/RUB-NDS/TLS-Padding-Oracles.
We are currently in contact with other vendors to fix the remaining vulnerabilities, but the some of the rare (in terms of the number of affected hosts) vulnerabilities are currently not attributed. To fix the remaining vulnerabilities, we ask for your assistance to help get rid of this issue. For this purpose, we integrated a standalone version of our padding oracle evaluation tool into our TLS-Scanner (v.2.7) project. This tool allows you (among other things) to evaluate if a specific server is vulnerable.

When the tool detects a vulnerability, it tries to attribute the vulnerability to a specific vendor or CVE. If we already know of the vulnerability of the server you scanned, the tool will print its details. If the tool does not have a description of the vulnerability in its database, it will ask you to notify us about the vulnerable server, such that we can notify the vendor and get the device fixed. To be clear: the tool never sends any data to us - you have the choice of whether to notify us (and what details to include). There is a chance that the tool's attribution is also mistaken, that is, the tool lists a vendor for your host, but you know for sure that you do not use an implementation by this vendor. Please contact us in such cases as well.

How to use the Tool

First, you need to grab hold of the tool. There are 3 ways to get your hands dirty: pre-compiled, self-compiled or Docker. We provide a pre-compiled version of the tool since the compilation process can get quite messy if you are not familiar with java and maven. You can directly download the resulting project here. However, if you also want to play around with the code, you have to compile everything yourself.

Building the TLS-Scanner

For this, you will need (Git), maven (sudo apt-get install maven), OpenJDK-8  (I can guarantee that this version works, other versions might work as well, have not tested it).

You will need to get TLS-Attacker 2.9 (if you do not already have it):
Now we can clone and install the TLS-Scanner

Docker

We also provide a Dockerfile, which lets you run the scanner directly

Getting Started


If you start the TLS-Scanner you should be greeted by a usage info, similar to the one below:

 or


This should give you an overview of the supported command line flags. The only really required one is the -connect flag (similar to OpenSSL and TLS-Attacker), with which you specify which host to scan. The most basic command is therefore:

Your output may look something like this:

By default, TLS-Scanner will run single-threaded. In such cases the scanning will take a while; just how long it will take depends on your server configuration. The scanner also supports multi-threading, which drastically improves the performance. There are two parameters to play around with, -threads, which controls how many different "probes" are executed in parallel, and -aggressive , which controls how many handshakes can be executed simultaneously. If you want the fastest results the following parameters are usually a good choice:

But lets get back to the results of the Scanner. Currently the Scanner supports a bunch of well known tests, like supported ciphersuites or protocol versions. These are very similar to what you may be used to from other scanners like ssllabs or testssl.sh.

Padding Oracles

The main advantage of our scanner is the ability to scan for padding oracle vulnerabilities (which is probably why you are reading this post). You will see if you are vulnerable in the "Attack Vulnerabilities" section. For example, when scanning hackmanit.de, the result is false. Good for us! But as you might have seen there is also another section in the scanner report:"PaddingOracle Responsemap"
This section lists the responses of the scanned host for each padding oracle vector, for each cipher suite and protocol version. For hackmanit.de, there is no detected difference in responses, which means hackmanit.de is not vulnerable to the attack:
If we want, we can also look at the concrete responses of the server. For this purpose, we start the scanner with the -reportDetail flag:

With this flag we now get the following details:

So what does this all mean? First of all, we named our malformed records. The interpretation of those names is visualized in the following table:
BasicMac-<position>-<XOR>  A Record with ApplicationData, MAC and padding bytes, where the padding byte at <position> is XOR'd <XOR>
 MissingMacByteFirst A Record without ApplicationData, where the first byte of the MAC is missing
 MissingMacByteLast A Record without ApplicationData, where the last byte of the MAC is missing
 Plain FF A Record without ApplicationData & MAC which only contains Paddingbytes: 64* 0xFF 
 Plain 3F A Record without ApplicationData & MAC which only contains Paddingbytes: 64* 0xF3
 InvPadValMac-[<position>]-<appDataLength>-<paddingBytes> A Record with invalid padding and valid MAC. The Record contains <appDataLength> many ApplicationData bytes and <paddingBytes> many PaddingBytes. The Padding is invalid at <position>.
 ValPadInvMac-[<position>]-<appDataLength>-<paddingBytes> A Record with valid padding and invalid MAC. The Record contains <appDataLength> many ApplicationData bytes and <paddingBytes> many PaddingBytes. The MAC is invalid at <position>.
 InvPadInvMac-[<position>]-<appDataLength>-<paddingBytes> A Record with invalid padding and invalid MAC. The Record contains <appDataLength> many ApplicationData bytes and <paddingBytes> many PaddingBytes. The MAC is invalid at the first position. The Padding is invalid at <position>.

Next to the name you can see what the actual response from the server was. Alert messages which are in [] brackets indicate that the alert was a fatal alert while () brackets indicate a warning alert. ENC means that the messages were encrypted (which is not always the case). The last symbol in each line indicates the state of the socket. An X represents a closed socket with a TCP FIN, a T indicates that the socket was still open at the time of measurement and an @ indicates that the socket was closed with an RST. So how did Hackmanit respond? We see a [BAD_RECORD_MAC]  ENC X, which means we received an ENCrypted FATAL BAD_RECORD_MAC alert, and the TCP connection was closed with a TCP FIN. If a server appears to be vulnerable, the scanner will execute the scan a total of three times to confirm the vulnerability. Since this response is identical to all our vectors, we know that the server was not vulnerable and the scanner is not re-executing the workflows.

Here is an example of a vulnerable host:
As you can see, this time the workflows got executed multiple times, and the scanner reports the cipher suite and version as vulnerable because of "SOCKET_STATE". This means that in some cases the socket state revealed information about the plaintext. If you look closely, you can see that for ValPadInvMac-[0]-0-59, ValPadInvMac-[8]-0-59 and ValPadInvMac-[15]-0-59 the server failed to close the TCP socket, while for all other vectors the TCP connect was closed with a TCP FIN. The server was therefore vulnerable.

Since the server was vulnerable, TLS-Scanner will also print an additional section: "PaddingOracle Details"

In this section we try to identify the vulnerability. In the example above, TLS-Scanner will print the following:

As you can see, we attribute this vulnerability to OpenSSL <1.0.2r. We do so by looking at the exact responses to our malformed records. We additionally print two important facts about the vulnerability: Whether it is observable and its strength. The precise details of these properties are beyond the scope of this blogpost, but the short version is:
If an oracle is observable, a man in the middle attacker can see the differences between the vectors by passively observing the traffic, without relying on browser or application specific tricks. A strong oracle has no limitations in the number of consecutive bytes an attacker can decrypt. If an oracle is STRONG and OBSERVABLE, then an attacker can realistically exploit it. This is the case in the example above.
For more details on this, you will have to wait for the paper.

Attribution

As you can see, we try to fingerprint the responsible device/implementation. However, we were not able to identify all vulnerable implementations yet. If we cannot attribute a vulnerability you will receive the following message:

Could not identify the vulnerability. Please contact us if you know which software/hardware is generating this behavior.

If you encounter this message, we do not know yet who is responsible for this padding oracle and would be happy to know which device/vendor is responsible. If you know who is, please contact us so that we can get in contact with the vendor to fix the issue. To reiterate, the tool never sends any data back to us, and it is your choice whether to contact us manually or not.

There are also some cases in which we can identify the vendor, but the vendor has not patched the vulnerability yet. If you encounter such a host, the scanner will tell you that we know the responsible vendor. To prevent abuse, we do not include further details.

Non-Determinism and Errors

In some cases, the scanner is unable to scan for padding oracles and reports ERROR or non-deterministic responses. The ERROR cases appear if the scanner failed could not handshake with the specified cipher suite and protocol version. This might be due to a bug in the tested TLS-Server or a bug in TLS-Attacker or TLS-Scanner. If you think the handshake fails because of an issue on our side, please open an issue on Github, and we will investigate. The more interesting cases are the non-deterministic ones. In such cases the scanner observed non-identical scan results in three separate scans. This can be due to non-determinism in the software, connection errors, server load or non-homogeneous load balancing. Currently, you will have to analyze these cases manually. In the paper, we excluded such hosts from our study because we did not want to artificially improve our results. But we understand that you as a tester want to know if the server is vulnerable or not. If the server is not truly vulnerable you would see the differences between the answers spread across all the different vectors. If the differences only appear on a subset of malformed records the server is very likely vulnerable. If you are unsure, you can also always scan multiple times (or scan slowly), increase the timeout, or if you are entirely lost get in touch with us. 


How YOU can help

Please use the scanner on all your hosts and check for padding oracle vulnerabilities. If the scanner can identify your vulnerability, a patch should already be available. Please patch your system! If the scanner does not identify the vulnerability (and instructs you to contact us), please contact us with the details (robert.merget@rub.de). If you can provide us with the detailed output of the scanner or even better, the name of the host, with the corresponding vendor, we could match the results with our database and help fix the issue. We can already attribute over 90% of the vulnerabilities, but there is still a lot to be discovered. We mostly scanned the Alexa top 1-million on port 443. Other protocols like IMAPS, POP3S, etc. might have different implementations with different vulnerabilities. If you find vulnerabilities with our tool, please give us credit. It helps us to get more funding for our project.

Issues with the Scanner


A notable feature of our scanner is that we do not actively try to avoid intolerances (like not scanning with a lot of cipher suites in the Hello messages etc.). We believe that doing so would hide important bugs. We are currently experimenting with intolerances checks, but the feature is now still in beta. If we cannot scan a server (most of the time due to intolerances or SNI problems), the scanner will report a lot of intolerances and usually no supported protocol versions. Some intolerances may trick the scanner into reporting false results. At the current stage, we cannot make any guarantees. If you are using this tool during a pentest, it might be smart to rescan with other scanners (like the recently released padcheck tool from our colleague Craig Young) to find the ground truth (this is good advice in general, since other mainstream scanners likely have the same issues). Note however that it is very unlikely that the scanner reports a false positive on a padding oracle scan.


Conclusion

There are still a lot of padding oracle vulnerabilities out there - and a lot of them are still unpatched. We hope you will find some bugs with the tool :) Happy H4cking :D


Acknowlegements

This is joint work from Robert Merget (@ic0nz1), Juraj Somorovsky (@jurajsomorovsky),  Nimrod Aviram (@NimrodAviram), Janis Fliegenschmidt (@JanisFliegens), Craig Young (@craigtweets), Jörg Schwenk (@JoergSchwenk) and (Yuval Shavitt).

More information


Ettercap: Man In The Middle (MITM)


"Ettercap is a suite for man in the middle attacks on LAN. It features sniffing of live connections, content filtering on the fly and many other interesting tricks. It supports active and passive dissection of many protocols (even ciphered ones) and includes many feature for network and host analysis." read more...


Website: http://ettercap.sourceforge.net

Related articles


  1. Hacking Significado
  2. Que Es Un Hacker
  3. Que Significa Hat
  4. Como Aprender A Hackear
  5. Hacking Time
  6. Hacking 2019
  7. Hacking Y Seguridad
  8. Growth Hacking Libro
  9. Start Hacking
  10. Aprender Seguridad Informatica
  11. Growth Hacking Barcelona

Be like Ada

Pre-S - We only have 9 demo slots left this week for our Pipeline Pro Tools software. If you want to get one before ou deal expires and to take advantage of our 1-free-playbook offer, click here to book one before they're gone.

Today, you get to decide who you want to be.

You can be the agent who sets goal after goal to grow your real estate business every year, only to fall short every time…

...or you can be like Ada.

Ada did our "Facebook Marketplace" workshop back in Feb -- same workshop you saw this week.

Unlike others... she didn't wait around, dreaming about using my hack to do more deals.

Instead, she took action the very next morning, implementing the strategy step-by-step.

Results? She has a buyer under contract.

See below:

Now is Ada rich yet? Heck no. But she will be soon.

How do I know? Because she has all the key components she needs to be a top-producer...

She has a repeatable formula for getting new clients.

All she has to do is rinse and repeat to add 2-3 extra deals per month... forever.

What would 2-3 extra deals per month mean to your business? What if you could scale that to an extra 10 deals per month?

If you want to see results like this, don't miss our deal on Pipeline Pro Tools.

This is my company's lead gen software, and it works hand-in-hand with the playbook I taught in this week's workshop. In fact, it makes my Facebook Marketplace hack 100x easier and more effective.

Enter promo code "JASON" to get $200 off the yearly option + 6 marketing playbooks + 6-months free enrollment in Elite, our private group coaching.

Or don't if you want to continue doing the same thing! You decide.

But remember, the deal ends tomorrow.

-> Get Pipeline Pro Tools Now
Expires tomorrow at 11:59pm eastern

If you still have questions or you just want to see it, get a demo.

-> Book a Demo

If you book a demo, the current deal will automatically be extended thru the day of your demo.

Plus right now, if you book a demo we'll give you 1 of our top 3 internal marketing playbooks that we use to generate 250+ quality leads for our local real estate team. It's your choice which one you want, and it's yours to keep forever (no strings attached).

And feel free to reply to this email if you have any questions!

Thanks,

-Chris Jones

Replay (.mp4)

A few weeks back, I showed my buddy Jason Morris (listing master) a method I've been using to get our team 8-10 solid leads PER DAY from Facebook Marketplace.

These are quality leads -- names and phone numbers of customers buying/selling in the next 105 days -- but the part that caught Jason's attention is the cost of this campaign... $0.00.

I WASN'T SPENDING A DIME.

Jason was floored.

The whole thing takes about 1 hour to set up, so I broke it down for him step-by-step.

He loved it and asked me to do a live workshop.

We did it yesterday, and it was AMAZING.

Here's the replay link if you missed it or want to watch it again...

-> FB Marketplace Hack - Webinar Replay (.mp4)
Downloads include ad templates + script for borrowing listings

Watch it now, because we will be taking the workshop down in 48hrs.

Here's what's in this workshop:

  • How to borrow a listing
  • 3 things you can do today to get 20 new leads
  • Creating a lead gen machine that runs in your sleep

I explain everything in the workshop. And at the end I show you how my team uses Pipeline Pro Tools to create a consistent stream of leads.

Are you interested in Pro Tools but are still on the fence or have more questions? Book a demo.

If you book a demo, we'll give you a free download of 1 of our internal marketing playbooks after it's over (no strings attached).

Plus, although our special deal on Pro Tools ends today, if you book a demo by 6pm, we'll happily extend the deal through the day/time of your demo :) so you can give due consideration to the investment.

Here's the direct link to book a demo -> http://www.calendly.com/guerilla-realty/web-demo

All the best,

-Chris Jones

Samurai: Web Testing Framework


"The Samurai Web Testing Framework is a live linux environment that has been pre-configured to function as a web pen-testing environment. The CD contains the best of the open source and free tools that focus on testing and attacking websites. In developing this environment, we have based our tool selection on the tools we use in our security practice. We have included the tools used in all four steps of a web pen-test." read more...


Website: http://samurai.inguardians.com

More information


Vulcan DoS Vs Akamai

In the past I had to do several DoS security audits, with múltiples types of tests and intensities. Sometimes several DDoS protections were present like Akamai for static content, and Arbor for absorb part of the bandwith.

One consideration for the DoS/DDoS tools is that probably it will loss the control of the attacker host, and the tool at least has to be able to stop automatically with a timeout, but can also implement remote response checks.

In order to size the minimum mbps needed to flood a service or to retard the response in a significant amount of time, the attacker hosts need a bandwith limiter, that increments in a logarithmic way up to a limit agreed with the customer/isp/cpd.

There are DoS tools that doesn't have this timeouts, and bandwith limit based on mbps, for that reason I have to implement a LD_PRELOAD based solution: bwcontrol

Although there are several good tools for stressing web servers and web aplications like apache ab, or other common tools used for pen-testing, but I also wrote a fast web flooder in c++ named wflood.

As expected the most effective for taking down the web server are the slow-loris, slow-read and derivatives, few host were needed to DoS an online banking. 
Remote attacks to database and highly dynamic web content were discarded, that could be impacted for sure.

I did another tool in c++ for crafting massive tcp/udp/ip malformed packets, that impacted sometimes on load balancers and firewalls, it was vulcan, it freezed even the firewall client software.

The funny thing was that the common attacks against Akamai hosts, where ineffective, and so does the slow-loris family of attacks, because are common, and the Akamai nginx webservers are well tunned. But when tried vulcan, few intensity was enough to crash Akamai hosts.

Another attack vector for static sites was trying to locate the IP of the customer instead of Akamai, if the customer doesn't use the Akamai Shadow service, it's possible to perform a HTTP Host header scan, and direct the attack to that host bypassing Akamai.

And what about Arbor protection? is good for reducing the flood but there are other kind of attacks, and this protection use to be disabled by default and in local holidays can be a mess.

Read more


Wednesday, May 20, 2020

What Is Cybersecurity And Thier types?Which Skills Required To Become A Top Cybersecurity Expert ?

What is cyber security in hacking?

The term cyber security  refers to the technologies  and processes designed  to  defend computer system, software, networks & user data from unauthorized access, also from threats distributed through the internet by cybercriminals,terrorist groups of hacker.

Main types of cybersecurity are
Critical infrastructure security
Application security
Network Security 
Cloud Security 
Internet of things security.
These are the main types of cybersecurity used by cybersecurity expert to any organisation for safe and protect thier data from hack by a hacker.

Top Skills Required to become Cybersecurity Expert-

Problem Solving Skills
Communication Skill
Technical Strength & Aptitude
Desire to learn
Attention to Detail 
Knowledge of security across various platforms
Knowledge of Hacking
Fundamental Computer Forensic Skill.
These skills are essential for become a cybersecurity expert. 
Cyber cell and IT cell these are the department  in our india which provide cybersecurity and looks into the matters related to cyber crimes to stop the crime because in this digitilization world cyber crime increasing day by day so our government of india also takes the immediate action to prevent the cybercrimes with the help of these departments and also arrest the victim and file a complain against him/her with the help of cyberlaw in our constitution.


Related news

FB Marketplace Hack - Replay (.mp4)

A few weeks back, I showed my buddy Jason Morris (listing master) a method I've been using to get our team 8-10 solid leads PER DAY from Facebook Marketplace.

These are quality leads -- names and phone numbers of customers buying/selling in the next 105 days -- but the part that caught Jason's attention is the cost of this campaign... $0.00.

I WASN'T SPENDING A DIME.

Jason was floored.

The whole thing takes about 1 hour to set up, so I broke it down for him step-by-step.

He loved it and asked me to do a live workshop.

We did it yesterday, and it was AMAZING.

Here's the replay link if you missed it or want to watch it again...

-> FB Marketplace Hack - Webinar Replay (.mp4)
Downloads include ad templates + script for borrowing listings

Watch it now, because we will be taking the workshop down in 48hrs.

Here's what's in this workshop:

  • How to borrow a listing
  • 3 things you can do today to get 20 new leads
  • Creating a lead gen machine that runs in your sleep

I explain everything in the workshop. And at the end I show you how my team uses Pipeline Pro Tools to create a consistent stream of leads.

Are you interested in Pro Tools but are still on the fence or have more questions? Book a demo.

If you book a demo, we'll give you a free download of 1 of our internal marketing playbooks after it's over (no strings attached).

Plus, although our special deal on Pro Tools ends today, if you book a demo by 6pm, we'll happily extend the deal through the day/time of your demo :) so you can give due consideration to the investment.

Here's the direct link to book a demo -> http://www.calendly.com/guerilla-realty/web-demo

All the best,

-Chris Jones

C++ Std::String Buffer Overflow And Integer Overflow

Interators are usually implemented using signed integers like the typical "for (int i=0; ..." and in fact is the type used indexing "cstr[i]", most of methods use the signed int, int by default is signed.
Nevertheless, the "std::string::operator[]" index is size_t which is unsigned, and so does size(), and same happens with vectors.
Besides the operator[] lack of negative index control, I will explain this later.

Do the compilers doesn't warn about this?


If his code got a large input it would index a negative numer, let see g++ and clang++ warnings:



No warnings so many bugs out there...

In order to reproduce the crash we can load a big string or vector from file, for example:


I've implemented a loading function, getting the file size with tellg() and malloc to allocate the buffer, then in this case used as a string.
Let see how the compiler write asm code based on this c++ code.



So the string constructor, getting size and adding -2 is clear. Then come the operator<< to concat the strings.
Then we see the operator[] when it will crash with the negative index.
In assembly is more clear, it will call operator[] to get the value, and there will hapen the magic dereference happens. The operator[] will end up returning an invalid address that will crash at [RAX]



In gdb the operator[] is a  allq  0x555555555180 <_znst7__cxx1112basic_stringicst11char_traitsicesaiceeixem plt="">

(gdb) i r rsi
rsi            0xfffffffffffefffe  -65538


The implmementation of operator ins in those functions below:

(gdb) bt
#0  0x00007ffff7feebf3 in strcmp () from /lib64/ld-linux-x86-64.so.2
#1  0x00007ffff7fdc9a5 in check_match () from /lib64/ld-linux-x86-64.so.2
#2  0x00007ffff7fdce7b in do_lookup_x () from /lib64/ld-linux-x86-64.so.2
#3  0x00007ffff7fdd739 in _dl_lookup_symbol_x () from /lib64/ld-linux-x86-64.so.2
#4  0x00007ffff7fe1eb7 in _dl_fixup () from /lib64/ld-linux-x86-64.so.2
#5  0x00007ffff7fe88ee in _dl_runtime_resolve_xsavec () from /lib64/ld-linux-x86-64.so.2
#6  0x00005555555554b3 in main (argc=2, argv=0x7fffffffe118) at main.cpp:29

Then crashes on the MOVZX EAX, byte ptr [RAX]

Program received signal SIGSEGV, Segmentation fault.
0x00005555555554b3 in main (argc=2, argv=0x7fffffffe118) at main.cpp:29
29     cout << "penultimate byte is " << hex << s[i] << endl;
(gdb)


What about negative indexing in std::string::operator[] ?
It's exploitable!

In a C char array is known that having control of the index, we can address memory.
Let's see what happens with C++ strings:






The operator[] function call returns the address of string plus 10, and yes, we can do abitrary writes.



Note that gdb displays by default with at&t asm format wich the operands are in oposite order:


And having a string that is in the stack, controlling the index we can perform a write on the stack.



To make sure we are writing outside the string, I'm gonna do 3 writes:


 See below the command "i r rax" to view the address where the write will be performed.


The beginning of the std::string object is 0x7fffffffde50.
Write -10 writes before the string 0x7fffffffde46.
And write -100 segfaults because is writting in non paged address.



So, C++ std::string probably is not vulnerable to buffer overflow based in concatenation, but the std::string::operator[] lack of negative indexing control and this could create vulnerable and exploitable situations, some times caused by a signed used of the unsigned std::string.size()










Continue reading


Tuesday, May 19, 2020

System Hacking: Password Cracking Techniques And Types Of Passwords


This blog based on two major concepts:
  • Understand password-cracking techniques
  • Understand different types of passwords
  •  

The simplest way to crack the passwords

The first step is to access the system is that you should know how to crack the password of the target system. Passwords are the key element of information require to access the system, and users also selects passwords that are easy to guess such as mostly people has a passwords of their pet's name or room number etc to help them remember it. Because of this human factor, most password guessing is successful if some information is known about the target. Information gathering and reconnaissance can help give away information that will help a hacker guess a user's password.

Once a password is guessed or cracked, it can be the launching point for escalating privileges, executing applications, hiding files, and covering tracks. If guessing a password fails, then passwords may be cracked manually or with automated tools such as a dictionary or brute-force method.

Types of Passwords 

  • Only numbers
  • Only letters
  • Only special characters
  • Letters and numbers
  • Only letters and special characters 
  • Numbers, letters and special characters
A strong password is less susceptible to attack by a hacker. The following rules, proposed by the EC-Council, should be applied when you're creating a password, to protect it against attacks:
  • Must not contain any part of the user's account name
  • Must have a minimum of eight characters
  • Must contain characters from at least three of the following categories:
    • Non alphanumeric symbols ($,:"%@!#)
    • Numbers
    • Uppercase letters
    • Lowercase letters
A hacker may use different types of attacks in order to identify a password and gain further access to a system. The types of password attacks are as follows:

Passive Online

​Eavesdropping on network password exchanges. Passive online attacks
include sniffing, man-in-the-middle, and replay attacks. Moreover, a passive online attack is also known as sniffing the password on a wired or wireless network. A passive attack is not detectable to the end user. The password is captured during the authentication process and can then be compared against a dictionary file or word list. User account passwords are commonly hashed or encrypted when sent on the network to prevent unauthorized access and use. If the password is protected by encryption or hashing, special tools in the hacker's toolkit can be used to break the algorithm.

Another passive online attack is known as man-in-the-middle (MITM). In a MITM attack, the hacker intercepts the authentication request and forwards it to the server. By inserting a sniffer between the client and the server, the hacker is able to sniff both connections and capture passwords in the process.

A replay attack is also a passive online attack; it occurs when the hacker intercepts the password en route to the authentication server and then captures and resend the authentication packets for later authentication. In this manner, the hacker doesn't have to break the password or learn the password through MITM but rather captures the password and reuses the password-authentication packets later to authenticate as the client.

Active Online

Guessing the Administrator password. Active online attacks include auto-
mated password guessing. Moreover, The easiest way to gain administrator-level access to a system is to guess a simple password assuming the administrator used a simple password. Password guessing is an active online attack. It relies on the human factor involved in password creation and only works on weak
passwords.

Assuming that the NetBIOS TCP 139 port is open, the most effective method of breaking into a Windows NT or Windows 2000 system is password guessing. This is done by attempting to connect to an enumerated share ( IPC$ or C$ ) and trying a username and password combination. The most commonly used Administrator account and password combinations are words like Admin, Administrator, Sysadmin, or Password, or a null password.
A hacker may first try to connect to a default Admin$ , C$ , or C:\Windows share. To connect to the hidden C: drive share, for example, type the following command in the Run field (Start ➪ Run):

\\ip_address\c$

Automated programs can quickly generate dictionary files, word lists, or every possible combination of letters, numbers, and special characters and then attempt to log on using those credentials. Most systems prevent this type of attack by setting a maximum number of login attempts on a system before the account is locked.

In the following sections, we'll discuss how hackers can perform automated password guessing more closely, as well as countermeasures to such attacks.

Performing Automated Password Guessing

To speed up the guessing of a password, hackers use automated tools. An easy process for automating password guessing is to use the Windows shell commands based on the standard NET USE syntax. To create a simple automated password-guessing script, perform the following steps:
  1. Create a simple username and password file using Windows Notepad. Automated tools such as the Dictionary Generator are available to create this word list. Save the file on the C: drive as credentials.txt.
  2. Pipe this file using the FOR command: C:\> FOR /F "token=1, 2*" %i in (credentials.txt)
  3. Type net use \\targetIP\IPC$ %i /u: %j to use the credentials.txt file to attempt to log on to the target system's hidden share.

Offline Attacks

Offline attacks are performed from a location other than the actual computer where the passwords reside or were used. Offline attacks usually require physical access to the computer and copying the password file from the system onto removable media. The hacker then takes the file to another computer to perform the cracking. Several types of offline password attacks exist.

Types of AttackCharacteristicsPassword Example
Dictionary attackAttempts to use passwords from a list of dictionary wordsAdministrator
Hybrid attackSubstitutes numbers of symbols for password charactersAdm1n1strator
Brute-force attackTries all possible combinations of letters, numbers, and special charactersMs!tr245@F5a

A dictionary attack is the simplest and quickest type of attack. It's used to identify a password that is an actual word, which can be found in a dictionary. Most commonly, the attack uses a dictionary file of possible words, which is hashed using the same algorithm used by the authentication process. Then, the hashed dictionary words are compared with hashed passwords as the user logs on, or with passwords stored in a file on the server. The dictionary attack works only if the password is an actual dictionary word; therefore, this type of attack has some limitations. It can't be used against strong passwords containing numbers or other symbols.

A hybrid attack is the next level of attack a hacker attempts if the password can't be found using a dictionary attack. The hybrid attack starts with a dictionary file and substitutes numbers and symbols for characters in the password. For example, many users add the number 1 to the end of their password to meet strong password requirements. A hybrid attack is designed to find those types of anomalies in passwords.

The most time-consuming type of attack is a brute-force attack, which tries every possible combination of uppercase and lowercase letters, numbers, and symbols. A brute-force attack is the slowest of the three types of attacks because of the many possible combinations of characters in the password. However, brute force is effective; given enough time and processing power, all passwords can eventually be identified.Related word
  1. Live Hacking
  2. Hacking Cracking
  3. Hacking Quotes